Outline

• Main features of IEEE P1581

• How can P1581 be used?

• Who benefits from IEEE P1581?
Main features of IEEE P1581

• Test mode entry and exit do not require extra device pins *(optional test pin is permitted)*
Main features of IEEE P1581

• Built-in test logic connects inputs to outputs, bypasses memory cells
• No special dynamic requirements
Main features of IEEE P1581

• Built-in test logic connects inputs to outputs, bypasses memory cells

IAX Test Logic
(12 address, 4 data bits)

XOR Test Logic
(6 address, 4 data bits)
Main features of IEEE P1581

• Very simple test pattern
 – For 12 address bits, complete test could be 26 patterns (all 1’s, all 0’s, walking 1, walking 0)
(Enhanced) Transparent Test Mode method A:

- Device powers up into P1581 test mode
- Exit with first write access after setup time
- Suitable in volatile memory devices
Test mode entry / exit methods

TTM method B:

- Delay guarantees stable logic levels on device pins
- Mode selected by input pin state combination after delay
- Exit / Reactivation upon “command”
Test mode entry / exit methods

TTM method C:

- Test mode entry / exit by means of:
 - Specific stimulus
 - Clock frequency shifting
 - Analog level shift
 - ...

Primary focus of current WG activities
P1581 beyond continuity test

- Continuity test (mandatory)
- Access to device ID
- Self repair
- Built-In Self Test
- Other
IEEE P1581 principle

External access to memory device pins (e.g. from Boundary Scan device pins)

IEEE P1581 device
- Memory Controller
- Test Ctrl. or TTM
- Memory Cells
- Combinatorial Test Logic

Test pin (if no TTM)

Input bus

Output bus

IEEE P1581 – NEW POSSIBILITIES FOR STATIC COMPONENT INTERCONNECTION TEST
http://grouper.ieee.org/groups/1581/
IEEE P1581 principle

Boundary Scan device
(IEEE 1149.1)

IEEE P1581 device

Memory Controller

TTM

Memory Cells

Combinatorial Test Logic

Input bus

Output bus

IEEE P1581 – NEW POSSIBILITIES FOR STATIC COMPONENT INTERCONNECTION TEST
http://grouper.ieee.org/groups/1581/
IEEE P1581 principle

In-Circuit Tester
(bed-of-nail fixture)

Memory Controller

TTM

Memory Cells

Combinatorial Test Logic

IEEE P1581 device

Input bus

x

Output bus

y

IEEE P1581 – NEW POSSIBILITIES FOR STATIC COMPONENT INTERCONNECTION TEST
http://grouper.ieee.org/groups/1581/
IEEE P1581 principle

BIST or functional access (e.g. embedded into FPGA)

IEEE P1581 device

Memory Controller

TTM

Memory Cells

Combinatorial Test Logic

Input bus

x

Output bus

y
Benefits

• For User:
 – No dedicated test pins required
 – Small test pattern file, shorter test time
 – All memory types can be supported
 – No dynamic requirements
 – Test patterns can be driven from BSCAN device, ICT, functional logic
 – Patterns can be generated by ATPG
Benefits

• For Chip Manufacturer:
 – No dedicated test pins required
 – Reduced test logic (vs. 1149.1)
 – Only one series of devices need to be supported (if P1581 satisfies customer requirements)
Conclusion

• IEEE P1581:
 – Enables new test applications
 – Improves existing test applications
 – Simple implementation, little overhead
 – Simple test pattern (resulting in small test programs)

• P1581 working group is soliciting input from Chip vendors

http://grouper.ieee.org/groups/1581/